Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
CNS Neurosci Ther ; 30(4): e14696, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38668740

RESUMEN

AIMS: Excessive neuroinflammation mediated mainly by microglia plays a crucial role in ischemic stroke. AZD1390, an ataxia telangiectasia mutated (ATM) specific inhibitor, has been shown to promote radio-sensitization and survival in central nervous system malignancies, while the role of AZD1390 in ischemic stroke remains unknown. METHODS: Real-time PCR, western blot, immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assays were used to assess the activation of microglia and the release of inflammatory cytokines. Behavioral tests were performed to measure neurological deficits. 2,3,5-Triphenyltetrazolium chloride staining was conducted to assess the infarct volume. The activation of NF-κB signaling pathway was explored through immunofluorescence staining, western blot, co-immunoprecipitation and proximity ligation assay. RESULTS: The level of pro-inflammation cytokines and activation of NF-κB signaling pathway was suppressed by AZD1390 in vitro and in vivo. The behavior deficits and infarct size were partially restored with AZD1390 treatment in experimental stroke. AZD1390 restrict ubiquitylation and sumoylation of the essential regulatory subunit of NF-κB (NEMO) in an ATM-dependent and ATM-independent way respectively, which reduced the activation of the NF-κB pathway. CONCLUSION: AZD1390 suppressed NF-κB signaling pathway to alleviate ischemic brain injury in experimental stroke, and attenuated microglia activation and neuroinflammation, which indicated that AZD1390 might be an attractive agent for the treatment of ischemic stroke.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Piridinas , Quinolonas , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos
2.
Bioresour Bioprocess ; 11(1): 15, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38647933

RESUMEN

Tobacco polysaccharides were extracted by hot water extraction, and purified and separated using DEAE-52 cellulose chromatography columns, and three purified polysaccharide fractions, YCT-1, YCT-2, and YCT-3, were finally obtained. The physicochemical properties of the three fractions were analyzed by ultraviolet spectroscopy, high-performance liquid chromatography and high-performance gel chromatography. The in vitro antioxidant activity of tobacco polysaccharides was compared among different fractions by using DPPH radical, hydroxyl radical scavenging assay and potassium ferricyanide method. The in vitro hypoglycemic activity was compared using α-amylase and α-glucosidase activity inhibition assay. And the in vitro hypolipidemic activity were investigated by using pancreatic lipase activity inhibition assay and HepG-2 intracellular lipid accumulation assay. All the results showed that the constituent monosaccharides of the three tobacco polysaccharide fractions were similar, but the molar percentages of each monosaccharide were different. The average molecular weights of the three components were 27,727 Da, 27,587 Da, and 66,517 Da, respectively, and the scavenging activities on DPPH radicals and hydroxyl radicals were at a high level with good quantitative-effect relationships. The reducing power were much lower than that of the positive control VC, and the three polysaccharide fractions had a weak inhibitory ability on α-amylase activity, but showed excellent inhibitory ability on α-glucosidase and pancreatic lipase activity. In addition, the results of cellular experiments showed that all three fractions were able to inhibit lipid over-accumulation in HepG-2 cells by increasing the mRNA expression levels of PPAR-α, CPT-1A, and CYP7A1 genes, and the tobacco polysaccharide YCT-3 showed the best effect. The mechanism by which YCT-3 ameliorated the over-accumulation of intracellular lipids in HepG-2 cells was found to be related to its influence on the expression of miR-155-3p and miR-17-3p in the exosomes of HepG-2 cells.

3.
Discov Med ; 36(183): 778-787, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665026

RESUMEN

BACKGROUND: Tropomyosin 2 (TPM2) has been linked to the advancement of various tumor types, exhibiting distinct impacts on tumor progression. In our investigation, the primary objective was to identify the potential involvement of TPM2 in the development of colitis-associated cancer (CAC) using a mice model. METHODS: This study used lentiviral vector complex for TPM2 knockdown (sh-TPM2) and the corresponding negative control lentiviral vector complex (sh-NC) for genetic interference in mice. CAC was induced in mice using azoxymethane (AOM) and dextran sulfate sodium salt (DSS). This study included 6 groups of mice models: Control, Control+sh-NC, Control+sh-TPM2, CAC, CAC+sh-NC, and CAC+sh-TPM2. Subsequently, colon tissues were collected and assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for TPM2 mRNA levels and flow cytometry for infiltrating immune cells. Tumor number, size, and weight within colon tissues from CAC mice were measured and recorded. The hematoxylin-eosin staining was used for observing tissue pathology changes. The intestinal epithelial cells (IECs) were isolated and analyzed for cell proliferation. This analysis included examining the levels of 5-bromo-2-deoxyuridine (BrdU) and Ki-67 using immunohistochemistry. Additionally, the mRNA levels of proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by qRT-PCR. This study also investigated the activation of the c-Jun N-terminal kinase (JNK) pathway using western blot analysis. Immunogenicity analyses were conducted using immunohistochemistry for F4/80 and flow cytometry. RESULTS: In 8-week-old mice, AOM injections and three cycles of DSS treatment induced TPM2 upregulation in tumor tissues compared to normal tissues (p < 0.05). Fluorescence-activated cell sorting (FACS)-isolated lamina CAC adenomas revealed macrophages and dendritic cells as primary TPM2 contributors (p < 0.001). Lentiviral TPM2 gene knockdown significantly reduced tumor numbers and sizes in CAC mice (p < 0.01, and p < 0.001), without invasive cancer cells. TPM2 suppression resulted in decreased IEC proliferation (p < 0.001) and reduced PCNA and Ki-67 expression (p < 0.05). Western blot analysis indicated reduced JNK pathway activation in TPM2-knockdown CAC mice (p < 0.05, p < 0.001). TPM2 knockdown decreased tumor-associated macrophage infiltration (p < 0.01) and increased CD3+ and CD8+ T cells (p < 0.01, and p < 0.001), with increased levels of regulator of inflammatory cytokines (CD44+, CD107a+) (p < 0.01, and p < 0.001), decreased levels of PD-1+ and anti-inflammatory factor (IL10+) (p < 0.01, and p < 0.001). CONCLUSIONS: Our results demonstrated that TPM2 knockdown suppressed the proliferation of CAC IECs, enhanced immune suppression on CAC IECs, and inhibited the JNK signaling pathway within the framework of CAC. These findings suggest TPM2 can serve as a potential therapeutic target for CAC treatment.


Asunto(s)
Proliferación Celular , Neoplasias Asociadas a Colitis , Sistema de Señalización de MAP Quinasas , Tropomiosina , Animales , Humanos , Masculino , Ratones , Azoximetano/toxicidad , Colitis/inducido químicamente , Colitis/patología , Colitis/complicaciones , Colitis/inmunología , Neoplasias Asociadas a Colitis/patología , Neoplasias Asociadas a Colitis/inmunología , Neoplasias Asociadas a Colitis/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/inmunología , Ratones Endogámicos C57BL , Tropomiosina/metabolismo , Tropomiosina/inmunología , Tropomiosina/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-38529320

RESUMEN

Tissue lymphatic vessels network plays critical roles in immune surveillance and tissue homeostasis in response to pathogen invasion, but how lymphatic system per se is remolded during infection is less understood. Here, we observed that influenza infection induces a significant increase of lymphatic vessel numbers in the lung, accompanied with extensive proliferation of lymphatic endothelial cells (LECs). Single-cell RNA sequencing illustrated the heterogeneity of LECs, identifying a novel PD-L1+ subpopulation that is present during viral infection but not at steady state. Specific deletion of Pd-l1 in LECs elevated the expansion of lymphatic vessel numbers during viral infection. Together these findings elucidate a dramatic expansion of lung lymphatic network in response to viral infection, and reveal a PD-L1+ LEC subpopulation that potentially modulates lymphatic vessel remolding.

5.
Sci Total Environ ; 922: 171373, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38428616

RESUMEN

Conventional buses, as an indispensable part of the urban public transport system, impose cross-infection risks on passengers. To assess differential risks due to dynamic staying durations and locations, this study considered four spatial distributions (i = 1-4) and six temporal scenarios (j = 1-6) of buses. Based on field measurements and a risk assessment approach combining both short-range and room-scale effects, risks are evaluated properly. The results showed that temporal asynchrony between infected and susceptible individuals significantly affects disease transmission rates. The Control Case assumes that infected and susceptible individuals enter and leave synchronously. However, ignoring temporal asynchrony scenarios, i.e., the Control Case, resulted in overestimation (+30.7 % to +99.6 %) or underestimation (-15.2 % to -69.9 %) of the actual risk. Moreover, the relative difference ratios of room-scale risks between the Control Case and five temporal scenarios are impacted by ventilation. Short-range risk exists only if infected and susceptible individuals have temporal overlap on the bus. Considering temporal and spatial asynchrony, a more realistic total reproduction number (R) can be obtained. Subsequently, the total R was assessed under five temporal scenarios. On average, for the Control Case, the total R was estimated to be +27.3 % higher than j = 1, -9.3 % lower than j = 2, +12.8 % higher than j = 3, +33.0 % lower than j = 4, and + 77.6 % higher than j = 5. This implies the need for a combination of active prevention and real-time risk monitoring to enable rigid travel demand and control the spread of the epidemic.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Vehículos a Motor , Transportes , Viaje , Medición de Riesgo
6.
Phys Rev Lett ; 132(7): 076001, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38427861

RESUMEN

The shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot-noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot-noise spectroscopy thus enables us, in principle, to determine the effective charge q of the charge carriers of that tunnel. This can be used to detect electron pairing in superconductors: In the normal state, the noise corresponds to single electron tunneling (q=1e), while in the paired state, the noise corresponds to q=2e. Here, we use a newly developed amplifier to reveal that in typical mesoscopic superconducting junctions, the shot noise does not reflect the signatures of pairing and instead stays at a level corresponding to q=1e. We show that transparency can control the shot noise, and this q=1e is due to the large number of tunneling channels with each having very low transparency. Our results indicate that in typical mesoscopic superconducting junctions, one should expect q=1e noise and lead to design guidelines for junctions that allow the detection of electron pairing.

7.
Acta Biomater ; 177: 431-443, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38307478

RESUMEN

The noble metal NPs that are currently applied to photothermal therapy (PTT) have their photoexcitation location mainly in the NIR-I range, and the low tissue penetration limits their therapeutic effect. The complexity of the tumor microenvironment (TME) makes it difficult to inhibit tumor growth completely with a single therapy. Although TME has a high level of H2O2, the intratumor H2O2 content is still insufficient to catalyze the generation of sufficient hydroxide radicals (‧OH) to achieve satisfactory therapeutic effects. The AuPd-GOx-HA (APGH) was obtained from AuPd bimetallic nanodumbbells modified by glucose oxidase (GOx) and hyaluronic acid (HA) for photothermal enhancement of tumor starvation and cascade catalytic therapy in the NIR-II region. The CAT-like activity of AuPd alleviates tumor hypoxia by catalyzing the decomposition of H2O2 into O2. The GOx-mediated intratumoral glucose oxidation on the one hand can block the supply of energy and nutrients essential for tumor growth, leading to tumor starvation. On the other hand, the generated H2O2 can continuously supply local O2, which also exacerbates glucose depletion. The peroxidase-like activity of bimetallic AuPd can catalyze the production of toxic ‧OH radicals from H2O2, enabling cascade catalytic therapy. In addition, the high photothermal conversion efficiency (η = 50.7 %) of APGH nanosystems offers the possibility of photothermal imaging-guided photothermal therapy. The results of cell and animal experiments verified that APGH has good biosafety, tumor targeting, and anticancer effects, and is a precious metal nanotherapeutic system integrating glucose starvation therapy, nano enzyme cascade catalytic therapy, and PTT therapy. This study provides a strategy for photothermal-cascade catalytic synergistic therapy combining both exogenous and endogenous processes. STATEMENT OF SIGNIFICANCE: AuPd-GOx-HA cascade nanoenzymes were prepared as a potent cascade catalytic therapeutic agent, which enhanced glucose depletion, exacerbated tumor starvation and promoted cancer cell apoptosis by increasing ROS production through APGH-like POD activity. The designed system has promising photothermal conversion ability in the NIR-II region, simultaneously realizing photothermal-enhanced catalysis, PTT, and catalysis/PTT synergistic therapy both in vitro and in vivo. The present work provides an approach for designing and developing catalytic-photothermal therapies based on bimetallic nanoenzymatic cascades.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias , Animales , Terapia Fototérmica , Catálisis , Glucosa , Glucosa Oxidasa , Neoplasias/terapia , Línea Celular Tumoral , Microambiente Tumoral
8.
Org Lett ; 26(8): 1595-1600, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373166

RESUMEN

Selective transformations at the more sterically hindered sites of organic molecules represent a frontier in the ability to precisely modify molecules. The lack of effective synthetic methods stands in stark contrast to the large number of encumbered sites encountered in molecules of interest. Here, we demonstrate that 1,2-bis(boronates) undergo selective alkynylation and alkenylation at the more sterically hindered C-B bond. Our preliminary mechanistic studies disclosed that this reaction can proceed through two convergent pathways involving direct coupling of sterically encumbered site versus 1,2-boron migratory coupling. Notably, this method facilitated convenient access to alkenyl and alkynyl boron products, which can be diversified by an array of transformations.

9.
Nucleic Acids Res ; 52(6): 3291-3309, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38165050

RESUMEN

The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.


Asunto(s)
Precursores del ARN , Empalme del ARN , Proteínas de Unión al ARN , Degeneración Retiniana , Animales , Humanos , Metilación , Conformación de Ácido Nucleico , Degeneración Retiniana/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , ARN Nuclear Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Empalmosomas/genética , Empalmosomas/metabolismo
10.
Colloids Surf B Biointerfaces ; 234: 113746, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199187

RESUMEN

Ischemic stroke is a neurological disease that leads to brain damage and severe cognitive impairment. In this study, extracellular vesicles(Ev) derived from mouse hippocampal cells (HT22) were used as carriers, and adenosine (Ad) was encapsulated to construct Ev-Ad to target the damaged hippocampus. The results showed that, Ev-Ad had significant antioxidant effect and inhibited apoptosis. In vivo, Ev-Ad reduced cell death and reversed inflammation in hippocampus of ischemic mice, and improved long-term memory and learning impairment by regulating the expression of the A1 receptor and the A2A receptor in the CA1 region. Thus, the developmental approach based on natural carriers that encapsulating Ad not only successfully restored nerves after ischemic stroke, but also improved cognitive impairment in the later stage of ischemic stroke convalescence. The development and design of therapeutic drugs provides a new concept and method for the treatment of cognitive impairment in the convalescent phase after ischemic stroke.


Asunto(s)
Vesículas Extracelulares , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratones , Adenosina/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Hipocampo , Vesículas Extracelulares/metabolismo , Cognición , Accidente Cerebrovascular Isquémico/metabolismo
11.
BMC Pediatr ; 24(1): 1, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172736

RESUMEN

BACKGROUND: The patients with multisystem and risk organ involvement Langerhans cell histiocytosis (MS-RO + LCH) have poor prognosis. The patients with MS-LCH who failed front-line therapy have a high mortality rate and the standard salvage treatment has not been established. The combination of cytarabine (Ara-c), vincristine (VCR) and prednisone might be effective for refractory/relapse MS-RO + LCH, with low toxicity. METHODS: We retrospectively analyzed pediatric refractory/relapse MS-RO + LCH patients treated with the low-dose Ara-c (100mg/m2/d×5days) or high-dose Ara-c (500mg/m2/d×5days) combined with vindesine (VDS) and prednisone in a single center. The efficacy, outcomes and adverse events were analyzed. RESULTS: From January 2013 to December 2016, 13 patients receiving the low-dose Ara-c chemotherapy (LAC) and 7 patients receiving the high-dose Ara-c chemotherapy (HAC) were included in the study. 11 (84.6%) of the 13 patients treated with the LAC regimen and 6 (85.7%) of the 7 patients treated with the HAC regimen had response after four courses of the therapy. All patients in the study were alive during follow-up and the 3-year event-free survival rate (EFS) was 53.7% and 85.7% in the LAC and HAC groups. The most frequent adverse event was Grade 1/2 myelosuppression, which was observed in 38.5% (5/13) and 42.9% (3/7) of the patients receiving the LAC and HAC regimen. CONCLUSIONS: A combination of Ara-c, VDS and prednisone was effective and safe for some patients with refractory/relapse MS-RO + LCH. The high-dose Ara-c regimen was associated with a numerically higher EFS rate.


Asunto(s)
Citarabina , Histiocitosis de Células de Langerhans , Niño , Humanos , Citarabina/efectos adversos , Prednisona/efectos adversos , Vindesina/uso terapéutico , Estudios Retrospectivos , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Histiocitosis de Células de Langerhans/inducido químicamente , Recurrencia , Resultado del Tratamiento
12.
Heliyon ; 10(1): e23336, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205320

RESUMEN

Aims: Excessive alcohol consumption can lead to alcoholic liver diseases (ALDs). Tetrastigma hemsleyanum Diels et Gilg is a rare Chinese medicinal herb. Tetrastigma hemsleyanum Diels et Gilg has been validated to be highly effective for treating hepatitis. Kaempferol and nicotiflorin are two highly representative flavonoids, which have exhibit therapeutic effects on liver disease. Therefore, the protective mechanism of kaempferol and nicotiflorin on alcohol-induced liver injury were investigated. Main methods: Forty mice were used in this study. After treatment of Kaempferol and nicotiflorin, serum and liver were collected and used for determination of biochemical indicators, H&E staining, and molecular detection. The interaction of miRNAs from serum extracellular vehicles (EVs) with mRNAs and 16S rRNA sequencing of gut microbiota were also investigated. Key findings: The results showed that kaempferol and nicotiflorins significantly ameliorated alcohol-induced liver damage and observably regulated gut microbiota. Specifically, the levels of malondialdehyde (MDA) and CYP2E1 in the liver significantly reduced, and the activity of superoxide dismutase (SOD) and glutathione (GSH) in the liver evidently increased. They also significantly relieved liver oxidative stress and lipid accumulation by suppressing miR-138-5p expression, inversely enhancing deacetylase silencing information regulator 2 related enzyme-1 (SIRT1) levels and then decreasing farnesoid X receptor (FXR) acetylation, which then modulated Nrf2 and SREBP-1c signaling pathways to regulate oxidative stress and lipid metabolism induced by alcohol. Significance: Kaempferol and nicotiflorin reduced alcohol-induced liver damage by enhancing alcohol metabolism and reducing oxidative stress and lipid metabolism. The intestinal microorganism disorder was also ameliorated after oral kaempferol and nicotiflorin.

13.
Front Biosci (Landmark Ed) ; 29(1): 34, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38287837

RESUMEN

Establishing reliable and reproducible animal models for disease modelling, drug screening and the understanding of disease susceptibility and pathogenesis is critical. However, traditional animal models differ significantly from humans in terms of physiology, immune response, and pathogenesis. As a result, it is difficult to translate laboratory findings into biomedical applications. Although several animal models with human chimeric genes, organs or systems have been developed in the past, their limited engraftment rate and physiological functions are a major obstacle to realize convincing models of humans. The lack of human transplantation resources and insufficient immune tolerance of recipient animals are the main challenges that need to be overcome to generate fully humanized animals. Recent advances in gene editing and pluripotent stem cell-based xenotransplantation technologies offer opportunities to create more accessible human-like models for biomedical research. In this article, we have combined our laboratory expertise to summarize humanized animal models, with a focus on hematopoietic/immune system and liver. We discuss their generation strategies and the potential donor cell sources, with particular attention given to human pluripotent stem cells. In particular, we discuss the advantages, limitations and emerging trends in their clinical and pharmaceutical applications. By providing insights into the current state of humanized animal models and their potential for biomedical applications, this article aims to advance the development of more accurate and reliable animal models for disease modeling and drug screening.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Humanos , Modelos Animales , Trasplante Heterólogo , Modelos Animales de Enfermedad
14.
Plant Foods Hum Nutr ; 79(1): 173-181, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38270741

RESUMEN

The aim of this study was to investigate the functional mechanism of Wuniuzao dark tea polysaccharide (WDTP) that protect against hyperlipidemia in mice induced by high-fat diet. WDTP was extracted by hot water, isolated and purified by DEAE-52 chromatography and characterized by high-performance liquid chromatograph (HPLC), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). Different doses (200 or 800 mg/kg/day) of WDTP were orally administered to mice induced by high-fat diet to evaluate the mechanism of WDTP regulating lipid metabolism. And these results showed that average molecular weight of WDTP was nearly 63,869 Da. And WDTP intervention significantly reduced body weight, lipid accumulation, and modulated blood lipid levels. The mechanism of WDTP ameliorating lipid metabolism was associated with regulating the expression of lipid metabolism-related genes and serum exosomes miR-19b-3p, and modulating the community structure of gut microbiota in mice.


Asunto(s)
Hiperlipidemias , Metabolismo de los Lípidos , Ratones , Animales , Té/química , Dieta Alta en Grasa/efectos adversos , Espectroscopía Infrarroja por Transformada de Fourier , Hiperlipidemias/tratamiento farmacológico , Lípidos , Ratones Endogámicos C57BL
15.
Haematologica ; 109(2): 458-465, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470145

RESUMEN

Primary hemophagocytic lymphohistiocytosis (pHLH) is a rare immune disorder and hematopoietic stem cell transplan- tation (HSCT) is the only potentially curative treatment. Given the high pre-HSCT mortality of pHLH patients reported in the HLH-2004 study (17%), more regimens to effectively control the disease and form a bridge with HSCT are needed. We conducted a retrospective study of pHLH children treated by ruxolitinib (RUX)-based regimen. Generally, patients received RUX until HSCT or unacceptable toxic side-effect. Methylprednisolone and etoposide were added sequentially when the disease was suboptimally controlled. The primary end point was 1-year overall survival. Twenty-one pHLH patients (12 previously treated and 9 previously untreated) were included with a median follow-up of 1.4 years. At last follow-up, 17 (81.0%) patients were alive with a 1-year overall survival of 90.5% (95% confidence interval: 84.1-96.9). Within the first 8 weeks, all patients had an objective response, of which 19 (90.5%) achieved complete response (CR) and two (9.5%) achieved partial response (PR) as a best response. Seventeen (81.0%) patients received HSCT, of which 13 (76.5%) had CR, three (17.6%) had PR and one (5.9%) had disease reactivation at the time of HSCT. Fifteen (88.2) patients were alive post- HSCT. Notably, eight (38.1%) patients received zero doses of etoposide, suggesting the potential of RUX-based regimen to reduce chemotherapy intensity. Patients tolerated RUX-based regimen well and the most frequently observed adverse events were hematologic adverse events. Overall, RUX-based regimen was effective and safe and could be used as a bridge to HSCT for pHLH children.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfohistiocitosis Hemofagocítica , Nitrilos , Pirazoles , Pirimidinas , Niño , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Linfohistiocitosis Hemofagocítica/etiología , Resultado del Tratamiento , Estudios Retrospectivos , Etopósido/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Respuesta Patológica Completa
16.
Food Funct ; 15(2): 809-822, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38131354

RESUMEN

This study aimed to enhance the stability and bioavailability of lycopene (LYC) and nicotinamide mononucleotide (NMN) by incorporating them into porous microgels after loading LYC into liposomes. The particle size, zeta potential, encapsulation rate (%), scanning electron microscopy images, and stability and release kinetics characteristics in simulating digestion confirmed that the microgels had high LYC and NMN encapsulation rates (99.11% ± 0.12% and 68.98% ± 0.26%, respectively) and good stability and release characteristics. The protective effect and potential mechanism of microgels loaded with LYC and NMN on lipopolysaccharide (LPS)-induced acute liver injury in C57BL/6 mice were investigated by intragastric administration for 28 days prior to LPS exposure. The results showed that the microgels loaded with LYC and NMN significantly ameliorated LPS-induced liver injury and reduced the inflammatory response and oxidative stress. In addition, LYC and NMN can not only act on the Toll-like receptor 4 (TLR4)/MD2 complex but also regulate TLR4-related miRNAs (miR-145a-5p and miR-217-5p) in serum extracellular vesicles, thereby synergistically inhibiting the TLR4/NF-κB signaling pathway. In addition, the microgels loaded with LYC and NMN were able to enrich beneficial bacteria that produced short-chain fatty acids and reduce harmful bacteria. In conclusion, LYC and NMN protected against LPS-induced acute liver injury via inhibition of oxidative stress and inflammation, as well as regulating the gut microbiota.


Asunto(s)
MicroARNs , Microgeles , Ratones , Animales , Licopeno/farmacología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Estrés Oxidativo , Hígado/metabolismo , MicroARNs/metabolismo
17.
Angew Chem Int Ed Engl ; 63(5): e202318441, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38098269

RESUMEN

The construction of acyclic, non-adjacent 1,3-stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long-standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2-bis(boronic) esters featuring acyclic and nonadjacent 1,3-stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem-diborylmethane in asymmetric catalysis. Additionally, we found that other gem-diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2-bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand-substrate steric repulsions in the syn-addition transition state.

18.
Front Oncol ; 13: 1298412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094605

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2023.1205358.].

19.
Cancer Med ; 12(24): 21615-21626, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38098254

RESUMEN

BACKGROUND: The European LeukemiaNet (ELN) risk classification system for acute myeloid leukemia (AML) patients has been used worldwide. In 2022, the ELN risk classification system modified risk genes including CEBPA mutation status, myelodysplasia-related (MR) gene mutations and internal tandem duplications of FLT3 (FLT3-ITD). METHODS: We include newly diagnosed de novo AML patients at our center from January 2017 to December 2021, regardless of the further treatment received. Clinical data and date of survival were included. Survival analysis were performed using the Kaplan-Meier method, and the log-rank test was used to compare survival between different risk groups. RESULTS: We include 363 newly diagnosed de novo AML patients from 2017 to 2021 to assess the accuracy of the ELN risk classification system. Their survival results show that the ELN-2022 risk classification system is not superior to the ELN-2017 version; for patients with FLT3-ITD mutations but without FLT3 inhibitor treatment, their survival is similar to the ELN-2022 adverse risk group. The ELN-2022 risk classification system cannot accurately clarify ECOG performance status (PS) 2-4 patients, especially in the ELN-2022 favorable risk group. CONCLUSION: The ELN-2022 risk stratification system may not be appropriate for patients unable to receive intensive therapy or FLT3 inhibitor; more real-world data is needed to straify patients with worse ECOG PS and inferior intensive therapy.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Factores de Riesgo , Análisis de Supervivencia , Pronóstico , Medición de Riesgo
20.
Environ Sci Pollut Res Int ; 30(59): 123507-123526, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37989945

RESUMEN

High-resolution urban surface information, e.g., the fraction of impervious/pervious surface, is pivotal in studies of local thermal/wind environments and air pollution. In this study, we introduced and validated a domain adaptive land cover classification model, to automatically classify Google Earth images into pixel-based land cover maps. By combining domain adaptation (DA) and semi-supervised learning (SSL) techniques, our model demonstrates its effectiveness even when trained with a limited dataset derived from Gaofen2 (GF2) satellite images. The model's overall accuracy on the translated GF2 dataset improved significantly from 19.5% to 75.2%, and on the Google Earth image dataset from 23.1% to 61.5%. The overall accuracy is 2.9% and 3.4% higher than when using only DA. Furthermore, with this model, we derived land cover maps and investigated the impact of land surface composition on the local meteorological parameters and air pollutant concentrations in the three most developed urban agglomerations in China, i.e., Beijing, Shanghai and the Great Bay Area (GBA). Our correlation analysis reveals that air temperature exhibits a strong positive correlation with neighboring artificial impervious surfaces, with Pearson correlation coefficients higher than 0.6 in all areas except during the spring in the GBA. However, the correlation between air pollutants and land surface composition is notably weaker and more variable. The primary contribution of this paper is to provide an efficient method for urban land cover extraction which will be of great value for assessing the urban surface composition, quantifying the impact of land use/land cover, and facilitating the development of informed policies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aprendizaje Profundo , China , Temperatura , Monitoreo del Ambiente/métodos , Ciudades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA